Tổng số lượt xem trang

Thứ Năm, 16 tháng 2, 2012

A”Twinkling Artifact” Targets Kidney Stones for Lithotrypsy Treatment

http://www.apl.washington.edu/projects/twinkling_artifact/experiments_modeling.html

Trong bài sau, các tác giả, Dr. Lawrence Crum và Dr. Michael Bailey ở Applied Physics Laboratory tại  University of Washington (APL-UW; Seattle, USA), với kết quả mô hình hoá tác động siêu âm Doppler trên sỏi thận, cho rằng  lực bức xạ âm (acoustic radiation force, ARF) là một trong những yếu tố của cơ chế tạo ra xảo ảnh lấp lánh (twinkling artifact). Cơ chế này hiện còn chưa rõ, dù đã có vài giả thuyết đã công bố trước đây.


Yêu cầu của nghiên cứu xuất phát từ nhu cầu điều trị sỏi thận cho phi hành gia trong không gian: không thể uống nhiều nước và ảnh hưởng của tình trạng phi trọng lực.
Các tác giả cho biết là sỏi khoảng 1/2 milimet sẽ bị dời chỗ dưới tác động của lực bức xạ âm tới chỗ thoát của thận, với tốc độ 1 cm mỗi giây; ứng dụng này như vậy còn có thể được áp dụng cho việc làm sạch các mảnh vỡ sau tán sỏi trong trường hợp điều trị trên mặt đất. 

 Đây là một ý tưởng mới về cơ chế tạo ra xảo ảnh lấp lánh.

Xem twinkling artifact
http://nguyenthienhung.blogspot.com/2010/04/twinkling-artifacts-useful-sonographic.html

http://nguyenthienhung.blogspot.com/2008/12/mt-s-xo-nh-siu-m-mu-v-mu-nng-lng-bng-v.html

Twinkling-Artifact Ultrasound Detects, Treats Kidney Stones, by Medimaging International staff writers. Posted on 14 Feb 2012

Space scientists are developing an ultrasound technology that could resolve various healthcare challenges associated with kidney stone treatment. The new technology detects stones with sophisticated ultrasound imaging based on a process called twinkling artifact, and provides treatment by pushing the stone with focused ultrasound. This technology could not only be beneficial for healthcare in space, but could also transform the treatment of kidney stones on Earth.


Kidney stones are frequently painful and sometimes difficult to remove, and 10% of the population will suffer from them. In space, the risk of developing kidney stones is exacerbated due to environmental conditions. The health risk is magnified by the fact that resource limitations and distance from Earth could restrict treatment options.
The project is led by US National Space Biomedical Research Institute (NSBRI; Houston, TX, USA) smart medical systems and technology team lead investigator Dr. Lawrence Crum and coinvestigator Dr. Michael Bailey; both are researchers at the Applied Physics Laboratory at the University of Washington (APL-UW; Seattle, USA).

Dr. Bailey stated that their technology is based on equipment currently available. “We have a diagnostic ultrasound machine that has enhanced capability to image kidney stones in the body,” said Dr. Bailey, a lead engineer at APL-UW. “We also have a capability that uses ultrasound waves coming right through the skin to push small stones or pieces of stones toward the exit of the kidney, so they will naturally pass, avoiding surgery.”

On Earth, the current preferred removal method is for patients to drink water to force the stones to pass naturally, but this does not always work, and surgery is frequently the only option. In space, the threat from kidney stones is greater due to the difficulty of keeping astronauts fully hydrated. Another factor is that bones demineralize in the reduced-gravity environment of space, dumping salts into the blood and eventually into the urine. The increased concentration of salts in the urine is a risk factor for stones.

Dr. Crum, who is a lead physicist at APL-UW, reported that kidney stones could be a serious difficulty on a long-duration mission. “It is possible that if a human were in a space exploration environment and could not easily return to Earth, such as a mission to an asteroid or Mars, kidney stones could be a dangerous situation,” Dr. Crum said. “We want to prepare for this risk by having a readily available treatment, such as pushing the stone via ultrasound.”

Before a stone can be pushed, it needs to be located. Conventional ultrasound units have a black and white imaging mode called B-mode that creates an image of the anatomy. They also have a Doppler mode that specifically displays blood flow and the motion of the blood within tissue in color. In Doppler mode, a kidney stone can appear brightly colored and twinkling. The reason for this is not known; however, the scientists are working to understand what causes the twinkling artifact image.

“At the same time, we have gone beyond twinkling artifact and utilized what we know with some other knowledge about kidney stones to create specific modes for kidney stones,” Dr. Bailey said. “We present the stone in a way that looks like it is twinkling in an image in which the anatomy is black and white, with one brightly colored stone or multiple colored stones.”


Once the stones are located, the ultrasound machine operator can select a stone to target, and then, with a simple push of a button, send a focused ultrasound wave, approximately half a millimeter in width, to move the stone toward the kidney’s exit. The stone moves about 1 cm per second. In addition to being an option to surgery, the technology can be used to “clean up” after surgery. “There are always residual fragments left behind after surgery,” Dr. Bailey said. “Fifty percent of those patients will be back within five years for treatment. We can help those fragments pass.”

The ultrasound technology being developed for NSBRI by Drs. Crum and Bailey is not restricted to kidney stone detection and removal. The technology can also be used to stop internal bleeding and ablate tumors. Dr. Crum reported that the research group has novel plans for the technology. “We envision a platform technology that has open architecture, is software-based and can use ultrasound for a variety of applications,” he said. “Not just for diagnosis, but also for therapy.”

NSBRI’s research range includes other projects seeking to develop smart medical systems and technologies, such as new uses for ultrasound that provide healthcare to astronauts in space. Dr. Crum, who served eight years as an NSBRI team leader, noted that the innovative approaches to overcome the restrictive environment of space could make an impact on Earth.

“Space has demanded medical care technology that is versatile, low-cost, and has restricted size. All of these required specifications for use in a space environment are now almost demanded by the general public,” Dr. Crum said. “One of the reasons that translation from one site to another is possible is because of NSBRI’s investment.”

Related Links:

US National Space Biomedical Research Institute

Applied Physics Laboratory at the University of Washington

____________________________________________________

A Doppler mode in clinical diagnostic ultrasound detects motion, particularly blood flow, and displays the moving blood as red or blue on the imager's screen. For some unknown reason, when a stationary kidney stone is imaged in Doppler mode, the stone is displayed as a rainblow of colors, which makes the stone readily apparent. Something about the presence of the stone tricks the machine into displaying the color, which is an artifact because the color does not represent true motion.

Because twinkling is an artifact, its appearance can be intermittent and unreliable. The unreliability is exacerbated because of the variability of ultrasound imager proprietary technologies. We are focused on how to understand the artifact and make it into a useful tool to detect and treat kidney stones with lithotripsy.

APPLICATIONS

We see at least three applications of the "twinkling artifact" to kidney stone treatment.

First, stones are usually diagnosed with spiral CT imaging, which cannot be done in a doctor's office and exposes the patient to ionizing radiation. Our ultrasound technique would allow an immediate localization in the doctor's office and spare the patient the radiation exposure.

Second, most stone are treated by lithotripsy, where shock waves are sent into the patient's body to break stones. Most often X-ray fluoroscopy, which is generally not as good as spiral CT, is used to find the stone to target the treatement. These images are not always clear and sometimes the lithotripsy is done based on a best guess as to the stone's location. Twinkling could provide better targeting without the X-ray radiation.

Third, the stone moves as the patient breathes during lithotripsy treatment, which mean that about half the shock waves miss the stone and impact only kidney tissue. Lithotripsy has known side effects (i.e., tissue injury) and the fewer shock waves used the fewer side effects. Twinkling is a sensitive and real-time stone detector that could be used to ensure shock waves are only triggered when the stone is in the lithotripter's focus.


Although the applications are clear, the mechanism that causes twinkling is a complex mixture of factors. The ultrasound imager produces tiny motions in the stone and receives from the stone an echo that is generally stronger than that from tissue and contains reverberations from within the stone. These extra signals appear as if structures within the volume of the stone are moving in and out of the image. The confusion is further compounded by processing within the machine, which essentially amplifies the extra signals and variation in the collection of sequences of images.


Our approach is to use numerical modeling of the echoes and reverberations, and compare these to the raw data collected by ultrasound images for stones in water, tissue, and patients. We then create our own images using specific algorithms that mimic the proprietary processing in the imaging systems. We can generally recreate what is shown on the imagers and detect patterns that are used to specifically image just stones and not motion.




In our experience, the artifact reveals the stone in 100% of the animal studies and has performed reliably in an initial handful of human studies.



Thứ Bảy, 11 tháng 2, 2012

HistoScanning™

HistoScanning™ là một ứng dụng siêu âm mới, bằng cách sử dụng thuật toán phân biệt mô tiên tiến, để thể hiện vị trí và lan rộng của mô biệt hoá, nghi là ác tính. Ban đầu dùng cho tuyến tiền liệt, giúp bác sĩ điều trị chọn phương thức xử l‎‎í, lên kế hoạch điều trị và chọn lọc bệnh nhân ung thư để theo dõi tích cực, sau được phát triển cho ung thư vú, buồng trứng và tuyến giáp.



Thuật toán HistoScanning


A. Thuật toán chọn lọc dựa vào đặc điểm biệt hoá mô.


Trình bày hình tượng hoá dấu ấn âm học (acoustic signature) điển hình của 3 thuật toán biệt hoá mô của vùng ác tính và không ác tính. Hình (a-c) thể hiện tổn thương ác tính và hình (d-f) là vùng không ác tính. Chú ý khác biệt giá trị của trục y giữa (a) và (d), (b) và (e), (c) và (f).



B. Thuật toán phân biệt cá thể và kết hợp được tạo nên từ dữ liệu của bệnh nhân (scan + mô học) để đạt được phân cách thống kê tối đa.


Đối chiếu các vùng ác tính và lành tính của tuyến tiền liệt cho kết quả các kiểu phân bố khác nhau về số hoá, phân bố của vùng ung thư (màu cam) lệch sang P (giá trị cao) trong khi vùng không bệnh có màu xanh.


C. Thuật toán được cài vào trong máy siêu âm để tối ưu hoá việc phân biệt mô.


Tích hợp các phân bố về toán học của 3 thuật toán phân biệt giúp xác định kiểu số hoá có khả năng giúp xác định rõ mô tuyến tiền liệt ác tính và không ác tính.


Nguyên lý hoạt động


Ung thư được phân biệt bởi tăng sản bất thường các tế bào ác tính làm thay đổi cấu trúc và đặc điểm mô. Biến đổi hình thái này ảnh hưởng đến kiểu tán xạ của sóng âm truyền qua mô. Thuật toán mới và độc quyền này ghi nhận được các thay đổi của tán xạ âm. Cách tiếp cận này giúp phân biệt đặc điểm cấu trúc mô xa hơn các kỹ thuật tạo hình siêu âm hiện tại. Thuật toán của HistoScanning có thể ứng dụng và xác định cấu trúc mô khu trú trong các cơ quan đặc biệt như tuyến tiền liệt, buồng trứng, tuyến giáp và tuyến vú.

Xem video  HistoScanning

________________________



What is HistoScanning™?


HistoScanning™ is a novel ultrasound-based application that utilises advanced tissue characterisation algorithms to visualise the position and extent of differentiated tissue, suspected of being malignant. Prostate HistoScanning™ is a commercially available specific application that can support physicians managing prostate cancer patients with treatment selection, treatment planning, and selecting patients for active surveillance. HistoScanning™ applications are being developed for Breast, Ovary and Thyroid.

HistoScanning™ algorithms

A

Several algorithms are selected based on their basic tissue differentiation characteristics.

Graphical representation of the typical acoustic signature of the three tissue characterisation algorithms for malignant and non-malignant areas. Graphs (a-c) represent a malignant lesion and graphs (d-f) represent a non-malignant area. Note the difference in the y axis value between (a) and (d), (b) and (e), (c) and (f).



B

Individual and composite differentiation algorithms are trained on patient data sets (scan + histology) to achieve maximum statistical separation.

Comparing normal and malignant areas in the prostate resulted in different distributions of numerical patterns, with distributions related to cancerous areas (in orange) systematically shifted to the right (higher values) when compared to distributions related to the normal area (in blue).



C

Trained algorithms are implemented into the system to provide optimized differentiation.

Mathematical integration of the distributions provided by the three characterization algorithms allowed the definition of numerical patterns likely to be specific of non-malignant or of malignant prostatic tissues.






Principle of Operation

Cancer is characterized by an abnormal proliferation of malignant cells resulting in altered tissue structures and characteristics. The resulting morphological variability affects the scatter patterns of ultrasound waves traveling through the tissue. Changes in the ultrasound scatter footprint are picked‐up by innovative and proprietary algorithms. This approach allows for differentiation of tissue morphology characteristics beyond what is possible with currently available ultrasound imaging techniques. The algorithms used by HistoScanning can be adapted and trained to identify inute localized tissue structures in specific organs (eg. prostate, ovary, thyroid, breast, etc).





The Value of HistoScanning

New insights provided by HistoScanning may help physicians:


• Shorten time to treatment

• Improve the diagnostic accuracy hence reducing uncertainties and patient anxiety

• When cancer is suspected, direct diagnostic modalities (such as biopsies) to lesions most likely to be malignant

• Make more informed treatment decisions

• Implement effective active surveillance programs so as to avoid or postpone radical treatment

• Actively monitor treatment effectiveness

• Achieve cost savings in patient management by ensuring the most efficient use of resources



HistoScanning Applications

HistoScanning technology can be adapted and trained to differentiate tissues in organs accessible by ultrasound. Applications are being developed to address various organs specific clinical challenges. Current developments are focused in the fields of prostate, ovarian, thyroid and breast cancer:


Prostate HistoScanning is primarily aimed at improving the clinical management of men presenting with elevated levels of Prostate Specific Antigen (PSA) and therefore scheduled to undergo ultrasound guided biopsy. Prostate HistoScanning may help rule out clinically relevant prostate cancer in men with elevated serum PSA due to non malignant conditions and guide biopsies towards the suspicious lesions in men with positive HistoScanning results. Furthermore, it has the potential to provide guidance in treatment selection based on the stage of cancer. HistoScanning for the prostate is currently under clinical evaluation.


Ovarian HistoScanning is for the clinical management of patients presenting with abnormal pelvic symptoms or a suspicious mass on a routine ultrasound scan. Ovarian HistoScanning has been shown in a multicentre clinical study to have sensitivity in the identification of cancerous tissue of 98% compared with 75% for the radiologist relying on the standard ultrasound scan alone. HistoScanning for the ovaries based on grey level data is currently under limited release.


Thyroid HistoScanning aims to address the clinical challenges associated with the differentiation and localization of thyroid cancer and may provide a non‐invasive alternative to actively monitor disease recurrence. HistoScanning for the thyroid is currently in the clinical evaluation phase.


Breast HistoScanning is aimed at supporting ultrasound‐based detection of malignancies in the breast and in particular improving the sensitivity and specificity of breast imaging. Furthermore, Breast HistoScanning is expected to facilitate screening in women with mammographically dense breasts.







Detection, localisation and characterisation of prostate cancer by Prostate HistoScanning™


Lucy A.M. Simmons, Philippe Autier Frantiŝek Zát'ura, Johan Braeckman, Alexandre Peltier, Ire Romic, Arnulf Stenzl, Karien Treurnicht, Tara Walker, Dror Nir, Caroline M. Moore, Mark Emberton

Article first published online: 17 NOV 2011


What's known on the subject? and What does the study add?

Prostate cancer is one of the few solid-organ cancers in which imaging is not used in the diagnostic process. Novel functional magnetic resonance imaging techniques offer promise but may not be cost-effective.

Prostate HistoScanning™ (PHS) is an ultrasound-based tissue characterisation technique that has previously shown encouraging results in the detection of clinically significant prostate cancer. The present study reports on the open ‘unblinded’ phase of a European multicentre study. The prospective ‘blind’ phase is currently in progress and will determine the value of PHS in a robust fashion overcoming many of the biases inherent in evaluating prostate imaging.

OBJECTIVE

To evaluate the ability of prostate HistoScanning™ (PHS) an ultrasound (US)-based tissue characterization application, to detect cancer foci by correlating results with detailed radical prostatectomy (RP) histology.

PATIENT AND METHODS


In all, 31 patients with organ-confined prostate cancer, diagnosed on transrectal biopsies taken using US guidance, and scheduled for RP were recruited from six European centres.


Before RP three-dimensional (3D) US raw data for PHS analysis was obtained. Histology by Bostwick Laboratories (London) examined sections obtained from whole mounted glands cut every 3–4 mm.


Location and volume estimation of cancer foci by PHS were undertaken using two methods; a manual method and an embedded software tool.


In this report we evaluate data obtained from a planned open study phase. The second phase of the study is ‘blinded’, and currently in progress.

RESULTS

31 patients were eligible for this phase. Three patients were excluded from analysis due to inadequate scan acquisition and pathology violations of the standard operating procedure. One patient withdrew from the study after 3D TRUS examination.

PHS detected cancer ≥0.20 mL in 25/27 prostates (sensitivity 93%).

In all, 23 patients had an index focus ≥0.5 mL at pathology, of which 21 were identified as ≥0.5 mL by PHS using the manual method (sensitivity 91%) and 19 were correctly identified as ≥0.5 mL by the embedded tool (sensitivity 83%).

In 27 patients, histological analysis found 32 cancerous foci ≥0.2 mL, located in 97 of 162 sextants. After sextant analysis, PHS showed a 90% sensitivity and 72% specificity for the localisation of lesions ≥0.2 mL within a sextant.

CONCLUSIONS

PHS has the ability to identify and locate prostate cancer and consequently may aid in pre-treatment and pre-surgical planning.

In men with a lesion identified, it has potential to enable improved targeting, allowing better risk stratification by obtaining more representative cores.

However further verification from the results of the blinded phase of this study are awaited.











Differential diagnosis of adnexal masses: sequential use of the risk of malignancy index and HistoScanning, a novel computer-aided diagnostic tool

E. VAES*†, R. MANCHANDA‡, P. AUTIER§, R. NIR¶, D. NIR¶, H. BLEIBERG**, A. ROBERT* and U. MENON‡, Ultrasound Obstet Gynecol 2012; 39:91–98


Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/uog.9079



ABSTRACT

Objective

To assess the value of ovarian HistoScanning TM, a novel computerized technique for interpreting ultrasound data, in combination with the risk of malignancy index (RMI) in improving triage for women with adnexal masses.

Methods

RMI indices were assessed in 199 women enrolled in a prospective study to investigate the use of HistoScanning. Ultrasound scores were obtained by blinded analysis of archived images. The following sequential test was developed: HistoScanning was modeled as a second-line test for RMI between a lower cut-off and an upper cut-off. The optimal combination of these cut-offs that together maximized the Youden index (Sensitivity + Specificity − 1) was determined.

Results

Using RMI at the standard cut-off value of 250 resulted in a sensitivity of 74% and a specificity of 86%. When RMI was combined with HistoScanning, the highest accuracy was achieved by using HistoScanning as a sequential second-line test for patients with R  values between 105 and 2100. At these cut-off values, sequential use of RMI and HistoScanning resulted in mean sensitivity and specificity estimates of 88% and 95%, respectively.

Conclusions
Our data suggest that HistoScanning may have the potential to improve the diagnostic accuracy of RMI, which could result in better triage for women with adnexal masses. Further prospective validation is warranted.

Copyright 2011 ISUOG. Published by John Wiley & Sons, Ltd.