Tổng số lượt xem trang

Thứ Ba, 21 tháng 8, 2012

VIÊM RUỘT THỪA CẤP Ở TRẺ EM: NÊN KHÁM SIÊU ÂM TRƯỚC TIÊN


Sonography is widely available, can be performed at the bedside, involves a short acquisition time, does not use ionizing radiation, is relatively inexpensive, and may show evidence of other causes of abdominal pain. It is particularly useful in evaluating young women, in whom the radiation dose to the reproductive organs should be minimized and for whom it is important to exclude ovarian and uterine conditions that might mimic appendicitis. There have been multiple studies evaluating the value of sonography in the evaluation of appendicitis, showing varying sensitivity, specificity, and accuracy. However, a recent study by Pacharn et al found that sonography for acute appendicitis had a negative predictive value of 95%, making it an excellent screening tool in the evaluation of acute appendicitis. Goldin et al suggested that standardizing the technique and criteria will decrease variability in the diagnostic accuracy of sonography across institutions.


Technique

The standard sonographic evaluation of the abdomen based on the American Institute of Ultrasound in Medicine practice guideline includes imaging of the appendix. A complete abdominal sonographic examination does not need to be performed in the evaluation of acute appendicitis.

However, because the appendix is not always located in the right lower quadrant and an abscess could be present, imaging should include not only the right lower quadrant but also the pelvis and left lower quadrant. A survey of the abdomen for free fluid or bowel thickening elsewhere is also helpful, especially in cases of suspected perforation.

At the start of the examination, it is helpful to ask the patient to point to the site of maximal tenderness and begin scanning in this location. Using a high-resolution linear transducer, the abdomen should be compressed while scanning, which moves bowel gas out of the field of view. This compression sonography is performed with an empty bladder. The most reliable way to identify the appendix is to find the ascending colon, follow the colon proximally to the cecum, and then find the appendix extending off the cecum.


If the appendix cannot be seen in the supine position, it may be helpful to place the patient in the left lateral decubitus position to cause a retrocecal appendix to be better seen.

Scanning with a full bladder may also be helpful because it can better delineate a deep pelvic appendix that might be obscured by overlying bowel.



The complete appendix should be visualized, including the tip. The maximal outer wall diameter should be measured, and the wall thickness should be measured along the course of the appendix. The normal maximal outer wall diameter of the appendix is less than 6 mm, and the mural thickness is less than 2 mm (Figure 1A). Compression of the appendix should be performed, with documentation of the appearance of the appendix during compression. A normal appendix compresses (Figure 1B). Secondary signs such as free fluid, a fecalith, and hyperechoic surrounding fat should be documented. Doppler imaging is helpful to evaluate for hyperemia; however, a necrotic appendix will have decreased or no blood flow. Video clips should be obtained to show normal peristalsis unless the physician is present during the scan. If an abscess is suspected, a lower- frequency curved array transducer may be used for a larger field of view and deeper penetration.

It is not always necessary to identify a normal appendix to consider the findings negative.  If there are no secondary signs as mentioned above, and clinical suspicion is moderately low for appendicitis, many institutions stop the evaluation and consider the sonographic findings negative for appendicitis.


In the setting of acute appendicitis, the appendix is noncompressible, and the maximal outer wall diameter is greater than 6 mm (Figure 2). An appendicolith may be present, helping the diagnosis (Figure 3); however, an appendicolith can be present without acute appendicitis, and the presence of an appendicolith does not confirm acute appendicitis.


There may also be secondary signs of inflammation, such as hyperechoic surrounding fat, free fluid, or an abscess (Figure 4). The wall may be hyperemic (Figure 5). Enlarged nodes can also be seen in the right lower quadrant, but this finding is nonspecific and can also be seen in patients without appendicitis. The surrounding bowel may be dilated with loss of normal peristalsis due to ileus.


Conclusions

Right lower quadrant sonography, when performed using rigorous technique and criteria for diagnosis, is an excellent screening tool for acute appendicitis. This examination is quick and painless and does not involve the use of ionizing radiation. Although the sensitivity, specificity, and accuracy of sonography vary greatly in studies evaluating the imaging diagnosis of acute appendicitis, it should be the first imaging modality when there is clinical concern for acute appendicitis. Only if the examination is equivocal or if the appendix cannot be identified should other imaging modalities such as CT be considered.

J Ultrasound Med 2012; 31:1153–1157 | 0278-4297 |www.aium.org
Valve of Gerlach/appendiceal orifice Joseph von Gerlach Joseph von Gerlach (1820-1896)

Appendiceal orifice (arrow) and water filled cecum.


Joseph von Gerlach (April 3, 1820 – December 17, 1896) was a German professor of anatomy at the University of Erlangen. He was a native of Mainz, Rhineland-Palatinate. Gerlach was a pioneer of histological staining and anatomical micrography. In 1858 Gerlach introduced carmine mixed with gelatin as an histological stain.[1] Along with Camillo Golgi, he was a major proponent of the theory that the brain's nervous system consisted of processes of contiguous cells fused to create a massive meshed network. Gerlach summed up his theory by stating: the finest divisions of the protoplasmic processes ultimately take part in the formation of the fine nerve fibre network which I consider to be an essential constituent of the gray matter of the spinal cord. The divisions are none other than the beginnings of this nerve fibre net. The cells of the gray matter are therefore doubly connected by means the nerve process which becomes the axis fibre and through the finest branches of the protoplasmic processes which become a part of the fine nerve fibre net of the gray matter. The reticular theory predominated until the 1890s when Ramon y Cajal brought forth his neuron doctrine of synaptic junctions, which in essence replaced the reticular theory. Gerlach was one of the first physicians to use photomicrography for medical research. In 1863 he published a handbook titled Die Photographie als Hilfsmittel mikroskopischer Forschung (Engl. "Photography as a tool in microscopic science") in which he discusses the practical and technological aspects of microscopic photography. The eponymous "Gerlach's valve" (valvula processus vermiformis) is named after him. This anatomical structure is a fold of membrane sometimes found at the opening of the vermiform appendix.[2] In his article Ueber das Hautathmen[3] (Engl. "On skin respiration") he was the first to show that human skin uses oxygen from ambient air.

Thứ Hai, 20 tháng 8, 2012

COMPARISON SWE to STRAIN ELASTOGRAPHY for THYROID NODULES


Abstract

Although elastography can enhance the dierential diagnosis of thyroid nodules, its diagnostic performance is not ideal at present. Further improvements in the technique and creation of robust diagnostic criteria are necessary. The purpose of this study was to compare the usefulness of strain elastography and a new generation of elasticity imaging called supersonic shear wave elastography (SSWE) in dierential evaluation of thyroid nodules. Six thyroid nodules in 4 patients were studied. SSWE yielded 1 true-positive and 5 true-negative results. Strain elastography yielded 5 false-positive results and 1 false-negative result. A novel finding appreciated with SSWE, were punctate foci of increased stiness corresponding to microcalcifications in 4 nodules, some not visible on B-mode ultrasound, as opposed to soft, colloid-inspissated areas visible on B-mode ultrasound in 2 nodules. This preliminary paper indicates that SSWE may outperform strain elastography in dierentiation of thyroid nodules with regard to their stiness. SSWE showed the possibility of dierentiation of high echogenic foci into microcalcifications and inspissated colloid, adding a new dimension to thyroid elastography. Further multicenter large-scale studies of thyroid nodules evaluating dierent elastographic methods are warranted.



Methods

During a few weeks trial time in 2010, four consecutive patients with single thyroid nodule (n = 1) and nodular goiter (n = 3) were evaluated. Approval for this study was obtained from the Ethics Committee of the Medical University of Warsaw, and all patients provided informed consent.

The Bmode and power Doppler ultrasound of whole thyroid and neck lymph nodes was performed. Six dominant thyroid nodules (in regard to B-mode and power Doppler ultrasound features) were evaluated with shear wave and strain elastography qualitatively and quantitatively as well as some with contrast-enhanced ultrasound (Sonovue (Bracco)). The examinations were performed with following scanner: AiXplorer (Supersonic Imagine Inc. France)—SSWE, Aplio XG (Toshiba, Japan)—strain elastography, Technos (Esaote, Italy)—contrast-enhanced ultrasound, with linear high-resolution transducers: 15–4MHz, 18–7MHz, and, 8–3MHz respectively. For strain elastography, we adopted qualitative scale of Rubaltelli et al. with threshold score of 2/3 and quantitative scale of Cantisani et al. with threshold thyroid tissue/nodule strain ratio of 2 measured with Elasto-Q (Toshiba). For shear wave elastography, we adopted quantitative scale of Sebag et al. with the threshold stiness (mean elastic modulus) of thyroid nodule of 65 kPa.

The final diagnosis was based on clinical evaluation, multiple FNB, 1 year followup, or surgery.


Discussion

Supersonic shear weave elastography consists of the generation of remote radiation force by focused ultrasonic beams, the so-called “pushing beams,” a patented technology called “Sonic Touch”. Using Sonic Touch, ultrasound beams are successively focused at dierent depth in tissues. The source is moved at a speed that is higher than the speed of the shear waves that are generated. In this supersonic regime, shear waves are coherently summed in a “Mach cone” shape, which increases their amplitude and improves their propagation distance. For a fixed acoustic power at a given location, Sonic Touch increases shear wave generation eciency by a factor of 4 to 8 compared to a nonsupersonic source. After generation of this shear wave, an ultrafast echographic imaging sequence is performed to acquire successive raw radiofrequency dots at a very high-frame rate (up to 20,000 frames per second). Based on Young’s modulus formula, the assessment of tissue elasticity can be derived from shear wave propagation speed. A color-coded image is displayed, which shows softer tissue in blue and stier tissue in red. Quantitative information is delivered; elasticity is expressed in kilo-Pascal (kPa).

This preliminary paper based on small number of cases indicates that SSWE indicated correctly thyroid nodules suspicious for cancer in contrast to strain elastography. False positives on strain elastography could be due to liquid or degenerative content of nodules.


However, imaging with SSWE, as a sensitive method of evaluation of stiness of human tissue, the operator should be aware of physiological processes influencing the elasticity and easily apply a few rules to avoid artifacts (Figures 4, 5 and 6). Among well-known artifacts on SSWE that should be mentioned is the one that can be encountered in any region when the SSWE can be applied: the increased stiness of the structures under externally applied pressure (Figures 4 and 5) that can be due to nonlinear elastic eects, well explained by theory.



Another artifact that can be encountered in thyroid SSWE is one of increased stiness in the isthmus of the thyroid due to trachea (Figure 6). It can be avoided with imaging in paracoronal plane of the nodule that does not incorporate the trachea. However, it is important to state that these artifacts when properly interpreted do not hinder the accurate diagnosis.



Supersonic shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules in several ways, for example:

(a) improve general performance in elasticity dierentiation of thyroid nodules over strain elastography due to its high reproducibility, independence of examiners skill and numeral scale of elasticity measurement in kPa;

(b) overcome the limitations of strain elastography=

  (i) nodules with liquid components or with degenerative changes;

  (ii) small nodules (very good spatial resolution of the technique);

  (iii) large nodules (possibility of subsequent determination of sti regions even  of large nodules, without the need of visualizing the whole nodule on one image);

  (iv) multinodular goiter with no or scarce normal thyroid tissue as a reference;

(c) dierentiation between soft-inspissated colloid and sti microcalcifications;

(d) visualization of microcalcifications, even not visualized on B-mode imaging (may increase sensitivity and decrease specificity of thyroid cancer diagnosis);

(e) introduction of three-dimensional elastographic images to routine clinical practice and to national thyroid cancer databases, as this technique is
already available and enables rapid acquisition of 3D ultrasound and elastographic data. This would devoid diagnostic process and data archiving of image selection bias attributable to 2D ultrasound examination.


Further multicenter large scale studies of thyroid nodules evaluating dierent elastographic methods are warranted, including (a) investigation of developmental models of diseases that link biomechanical properties (elastography findings) with genetic, cellular, biochemical, and gross pathological changes; (b) comparison of accuracy of dierent elastographic methods; (c) establishment of optimal diagnostic elastographic criteria; (d) establishment of limitations of different elastographic methods in relation to evaluation of thyroid pathology.